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Abstract

A robust controller design is proposed for multi-degree-of-freedom active vibration isolation, which
accounts for plant uncertainties and payload disturbances using frequency-shaped sliding control. First,
modal decomposition is employed to rewrite the MIMO vibration control problem as a combination of
individual SISO control problems in modal coordinates. The modal parameters for decomposition and
modelling can be extracted from theoretical or experimental modal analysis. Next, the target frequency-
domain performance of isolation, in this case a skyhook model, is recast as a frequency-shaped sliding
surface. The practical effects of boundary layer approximation in the resulting controller design are
examined. Simulations illustrate that the ideal skyhook effect can indeed be robustly achieved. The
frequency-shaped manifold is also extended to adaptive vibration isolation without using model reference.
This algorithm has been recently verified by experiments (IEEE Transactions on Control Systems
Technology (2005), in press), and has been demonstrated very effective for vibration isolation. The paper
also shows, more generally, that the design of a frequency-shaped sliding surface is formally equivalent to a
feedback–feedforward compensation problem. Nonlinear target dynamics of the same order as the nominal
plant can also be attained.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibration isolation has been of great interest in the academic and industrial areas of precision
machine tools, optical instruments, automobiles, aerospace, and civil structures. Passive isolators
are often sufficient for high-frequency isolation in many applications. But damping tradeoffs exist
between the isolation performance at high frequency and that at low frequency. Soft mounting is
preferred for seismic vibration, but it causes static misalignment and dynamic instability under
payload disturbances. To improve the performance (especially at low frequencies), active isolators
are typically used.
Many configurations and control methods have been developed for the active isolation, such as

linear control with velocity feedback [1,2], acceleration feedback [3], or force feedback [4], LQG/
H2 control [5], and feedforward control [6].
In practice, since actual systems have many sources of uncertainties, robust controllers are

required. H1 and m-synthesis are used experimentally for robust active isolation [7]. Conventional
sliding mode control has been used in base isolation of building structures [8,9]. Alleyne and
Hedrick [10] and Kim and Ro [11] use the skyhook model as reference, and employ model-
reference adaptive control and sliding control to track a given skyhook force or states. An
adaptive sliding control algorithm has also been developed by Wang and Sinha [12] for multi-
degree-of-freedom microgravity isolation, where the reference model is defined as an ideal transfer
matrix.
To further enhance the isolation performance, multi-stage isolation may become necessary,

combining passive and active stages [13,14]. Further uncertainties exist in such systems, which
arise more challenges in system modelling and robust control. For instance, the mass, location,
and dynamics of upper stages or the payload might be unknown or time-varying.
In this paper, we provide a practical approach for the control of MIMO isolation system with

plant uncertainties and disturbances from upper stages through measurement-based (or
analytical) modal decomposition and a novel sliding control strategy. In place of the standard
sliding surfaces used in Refs. [8–12], we exploit frequency-shaped sliding surfaces, originally
proposed in Ref. [15] for chattering attenuation, for shaping system performance directly in the
frequency domain. Such a specification is quite natural for a skyhook dynamics target. The
controller can be synthesized based on the data of experimental modal analysis, as well as a
mathematical model.
The paper is organized as follows. Section 2 introduces modal analysis and decomposition.

MIMO control of the isolation system can be handled with SISO systems in modal coordinates,
with the residual coupling from other modes and payload dynamics taken as disturbances. In
Section 3, frequency-shaped sliding control is used to achieve skyhook isolation under
modal uncertainties and payload disturbances, as well as coupling due to decomposition
errors. Smooth boundary layer implementation of the controller is examined and quantified
for the given isolation requirement. The effects of geophone dynamics and mode combination
are also explored. Simulation results verifying the design are presented in Section 4.
The experiment verification of our algorithm of frequency-shaped manifolds for vibration
isolation and its adaptive version [16] is briefly presented in Section 5, which also generalizes
the design of frequency-shaped sliding surfaces from the point of view of linear compensator
design and of contraction theory. This allows linear or nonlinear target dynamics of the
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same order as the nominal plant to be systematically specified. Concluding remarks are given
in Section 6.
2. Modal decomposition and experimental modal analysis

Fig. 1 shows a typical configuration of a multi-dof isolation system. A two-dof system is shown
there, but it can be up to six dof. A multi-dof isolation table is supported on the ground by springs
and dampers. On the isolation table are the other stages (passive or active), or payload. The
measurements are the displacements relative to the floor and the absolute velocities of the table.
(A geophone senor produces a signal proportional to the absolute velocity above its natural
frequency.) The control forces can be generated by linear voice-coil motors, pneumatic or
hydraulic actuators, or piezoelectric stacks. Our goal is to design the controller to achieve the
vibration attenuation of the floor excitation under plant uncertainties and disturbances from the
upper stages and payload. The performances of isolation systems are often specified in the
frequency domain, such as the precision machine tools [17], gravitational wave detectors [14], and
micro-gravity experiments [12].
2.1. Modal decomposition

The mass, stiffness and damping properties of the isolation system can be obtained from
mechanical design, and an analytical or finite-element model can be constructed. However, in
practice it is hard to model the dynamics of the system accurately (even for the first stage) because
of the uncertainties on the joints, contacts, damping, flexural modes, and payload. It is well
known that the mathematical model often does not match the experimental measurements and
cannot be used in MIMO controller design with confidence. Bode/Nyqusit-based approaches have
been extended to MIMO systems somehow (see the text by Hung and MacFarlane [18]), but the
results are not convenient for use in controller synthesis. A great deal of efforts has been invested
in model development, such as system identification from experimental observation [19], and
model updating [20], which tries to correct the finite element models using the test data. In the past
40 years, experimental modal analysis [21] has been developed as an important and powerful tool
in structural dynamics. In the following, we show how to use modal testing techniques to identify
υ1 υ2k1
c1

k2
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z1 z2

z0

upper stage and payload

isolation table

base

M1, I1

Fig. 1. Typical configuration of a multi-dof isolation system.
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the modal frequencies, damping, and mode shapes for the isolation system, and then use them in
the controller design.
The governing equation of the n-dof isolation table with n force actuators takes the form

M €z þ Cð_z � _z0Þ þ Kðz � z0Þ ¼ Bvv þ f d ; (1)

where M, C, and K are, respectively, the mass, damping, and stiffness matrices of dimension n � n;
Bv is an n � n matrix taking into account the effect of actuator locations, f d is the vector of
disturbance forces acting on the isolation table, such as external forces or dynamics of the upper
stages and payload, and z0 is the vector of floor displacements.
Since the mass matrix M is nonsingular, Eq. (1) is identical to

€z þ M�1Cð_z � _z0Þ þ M�1Kðz � z0Þ ¼ M�1Bvv þ M�1f d : (2)

The matrix M�1K can usually be written in the diagonalized form:

M�1K ¼ VLV�1; (3)

where L is a diagonal matrix composed of o2
i ; i ¼ 1; 2; . . . n; oi is the undamped modal frequency,

and the matrix V is composed of the mode shape vectors.
Take the transformation

x ¼ V�1z and u ¼ V�1M�1Bvv ¼ Wv: (4)

Then, in modal coordinates we have

€x þ V�1M�1CV ð _x � _x0Þ þ Lðx � x0Þ ¼ u þ V�1M�1f d ; (5)

where V�1M�1CV is the diagonal in the case of proportional damping C ¼ aM þ bK (a and b
are constants). The ith diagonal item of V�1M�1CV is 2zioi; where zi is the so-called modal
damping ratio. Let us denote the irth off-diagonal entry as �ir; and ith element of vector V�1M�1f d

as di; then we have

€xi þ 2zioið _xi � _x0iÞ þ o2
i ðxi � x0iÞ ¼ ui þ di �

Xn

r¼1;rai

�irð _xr � _x0rÞ; i ¼ 1; 2; . . . n: (6)

2.2. Experimental modal analysis

By using the modal transformation (4), the governing equation (1) of 2nth order has been
decomposed as n second-order systems in modal coordinates. There are two advantages of this
modal decomposition. The first is that a MIMO control of a high-order system has been changed
into lower-order SISO problems, which can be handled more easily. These lower-order SISO
problems also have clear physical meaning: we can design each loop to control the individual
mode. The second advantage is that the matrices V and W used in the decomposition and the
parameters zi and oi can be obtained from experimental modal testing. In modal testing [21], the
matrix Bv is usually taken as identity. The idea for general case of Bv is similar.
Let us first assume proportional damping. From Eqs. (1) and (4), we obtain the forced response

from vðjoÞ to zðjoÞ (without z0 and f d) as

n o2
i þ 2jziooi � o2

n

� �
V�1zðjoÞ ¼ V�1M�1BvvðjoÞ ¼ WvðjoÞ;
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where n 	 n

� �
is a diagonal matrix. That is, the frequency response function (FRF) matrix

vðjoÞ ! zðjoÞ takes the form

HðjoÞ ¼ V n o2
i þ 2jziooi � o2

n

� ��1
W ¼

Xn

i¼1

ViW
T
i

o2
i þ 2jziooi � o2

; (7)

where Vi is the ith mode shape (ith column of V), and W i is the ith column of W ; which represents
the contribution of input vi to the responses. (Therefore, W is called the mode participation
matrix.)
Eq. (7) is the central relationship upon which the modal testing techniques are based. Using

modal testing devices, or directly using the actuators and sensors of the isolation system, we can
measure the FRF matrix. Then, we can use curve fitting to extract the mode shape vectors Vi;
modal participation vectors W i; modal frequencies oi; and modal damping zi; where i ¼
1; 2; . . . ; n: From Eq. (7), we see that the residue matrix ViW

T
i at each mode is a rank-one matrix;

therefore, theoretically all the modal parameters can be extracted from any column and any row
of the FRF matrix. Specially, if all the actuators and sensors are of collocated pairs, the FRF
matrix will be symmetric, and W can be taken as V�1: (Because of scaling effects, WV might not
be the identity matrix, but WV is diagonal.) Multi-input multi-output modal analysis has also
been proposed for large-scale structures in case some mode cannot be excited or observed. In the
past 20 years, different time-domain and frequency-domain fitting methods have been developed,
and software packages are also available, such as MODENT SuiteTM by ICATS Company and
STAR SystemTM by Spectral Dynamics, Inc.
Proportional damping is a good approximation for most engineering structures which are

lightly damped. For nonproportional damping, similar relationships as Eq. (7) exist, but the mode
shapes are generally complex-valued vectors. The undamped eigenvectors are not the damped
eigenvector any more, since the nonproportionally damped modes are not simply in the pattern of
in-phase and out-of-phase.
In the foregoing analysis, we assume that the number of actuators and the number of

measurements is equal to the degrees of system. This is a so-called complete modal model, which is
convenient for theoretical study. In structure control, we might only be concerned with the first m
modes by using m actuators and sensors. For this type of incomplete modal model, the foregoing
procedure is still valid by replacing the inverse of modal shape matrix V and modal participation
matrix W in the transformation (4) with the pseudo-inverse of size m � n: But some attention
should be paid to the effect of performance-reducing control spillover and destabilizing
observation spillover (see, e.g., Refs. [22–24]).
Other than experimental modal analysis, the decomposition matrices may also be obtained

from the measured FRF matrix by using an optimal decoupling procedure developed in Ref. [25]
based on Owens’ theory of dyadic systems [26].
3. Sliding control for frequency-domain performance

With the modal transformation (4) in Section 2, we can transform a MIMO high-order
isolation problem into second-order SISO control, and all the parameters oi; zi; V, and W used in
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the modelling and decomposition can be obtained from experimental or theoretical modal
analysis. Hence, we can design each SISO controller for the individual mode to achieve the
isolation performance, as shown in Fig. 2.
Rewrite the governing equation in modal coordinate as

€xi þ 2zioið _xi � _x0iÞ þ o2
i ðxi � x0iÞ ¼ ui þ di �

Xn

r¼1;rai

�irð _xr � _x0rÞ; i ¼ 1; 2; . . . ; n: (8)

We can find, however, that the modes are not completely decoupled because of the coupling by
nonproportional damping. Another question is that there are uncertainties in the natural
frequency frequencies oi and damping zi due to the modal testing error or time-varying of
structures. Third, the system is subjected to payload disturbance or upper stage dynamics other
than unknown base excitation. It is feasible to design a linear controller to achieve some
performance of vibration isolation and disturbance rejection, for example, using absolute velocity
or acceleration feedback. However, since there lack true inertia sensors, due to the sensor
dynamics at low frequency, such a feedback generally results in a crossover at low frequency in
addition to the crossover at high frequency (see Ref. [27], for example). This low-frequency
crossover will limit the feedback gain and cannot achieve a steep enough vibration rolloff in the
frequency domain. Positive feedback of relative position can directly decrease the resonant
frequency oi and attenuate the vibration, but such a cancellation of stiffness may make the system
unstable under the uncertainties. Therefore, we turn to sliding control, one of the main robust
control techniques for dealing with model uncertainties and external disturbance [28–30].
3.1. Sliding control and frequency-domain performance

Sliding control is based on the idea of transforming an original control problem into one of
driving system dynamics onto a specific manifold in the state space. In essence, it replaces a
possibly high-order problem by a first-order problem, that of controlling the ‘‘distance’’ to the
manifold to zero. As a nonlinear control method, sliding control has been mainly used in tracking
control problems (see e.g., Ref. [28]). For vibration isolation/suspension, however, our main
concern is frequency-domain performance. In this context, an idea [10–12] is to choose a so-called
reference plant according to the performance requirement, then control the real plant to track the
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Fig. 2. Modal control of a multi-dof isolation system.
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states or certain outputs of the reference plant. This, however, has three shortcomings. One is that
it usually requires the measurement of ground vibration, which is not practical in many cases,
such as for vehicle suspension systems. Another is the tradeoff of bandwidth: a wide bandwidth
decreases tracking error but it can increase control activity or chattering. Third, the performance
during the transient stage cannot be guaranteed. In the following, rather than defining and
tracking a reference model, we directly design the sliding surface to meet the requirement of
frequency-domain performance. This approach does not have the foregoing shortcomings of a
reference-tracking schedule.
For the ith mode of the isolation system in second-order form (8), the measured variables are

often xi � xi0 and _xi: The conventional sliding variable can be defined as

si ¼ liðxi � xi0Þ þ _xi; (9)

where li is a constant. Then, on the sliding surface si ¼ 0; the system dynamics are

xiðsÞ

xi0ðsÞ
¼

li

s þ li

; (10)

where s is the Laplace operator. That is, the base vibration is attenuated at �20 dB/decate above
the frequency li: However, for the second-order plant (8), the such vibration attenuation �20 dB/
decate as a first-order system attained by using the conventional sliding control might be not fast
enough.
Instead of designing the sliding surface as the intersection of the hyperplanes defined in the

plant states, we can replace li as a linear operator LiðsÞ: This is

si ¼ LiðsÞðxi � xi0Þ þ _xi: (11)

Then, once the system is driven to the sliding surface si ¼ 0; the dynamics become

xiðsÞ

xi0ðsÞ
¼

LiðsÞ

s þ LiðsÞ
: (12)

For example, we can take LiðsÞ ¼ ðb1s þ b0Þ=ðs þ a0Þ: Then

si ¼
b1s þ b0

s þ a0
ðxi � xi0Þ þ _xi: (13)

Also, on this sliding surface we have

xiðsÞ

xi0ðsÞ
¼

b1s þ b0

s2 þ ða0 þ b1Þs þ b0
: (14)

Thus, we achieve a second-order dynamics for the second-order plant (8) by using the sliding
surface (13).
The idea of taking the sliding surface as a manifold defined by linear operators was originally

proposed by Young and Ozguner [15] for the purpose of reducing the effect of unmodeled high-
frequency dynamics in flexible manipulators. Therein, it has been interpreted as a low-pass filter
and given the name ‘‘frequency-shaped sliding surface’’. A similar strategy, called dynamic sliding
mode, has also been proposed by Chan and Gao [31] and Yao and Tomizuka [32] for robot
manipulator control. In the following, we provide a physical interpretation of the frequency-
shaped sliding surface as applied to vibration isolation.
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3.2. Physical interpretation: skyhook

Let us assume b1 ¼ 0 in the frequency-shaped sliding surface (8), then the ideal dynamics (on
the sliding surface) are

xiðsÞ

xi0ðsÞ
¼

b0

s2 þ a0s þ b0
: (15)

The mechanical system corresponding to this transmission is shown in Fig. 3(a), where a unit mass
is supported on the vibrating base via a spring of stiffness b0 and is connected to the inertial sky
via a dashpot of damping coefficient a0: This is exactly the skyhook damping suggested by
Karnopp [1,2].
Usually the dashpot can only connect to the base since there is no practical inertial sky.

Fig. 3(b) shows such a configuration. And the corresponding transmission from xi0 to xi is

xiðsÞ

xi0ðsÞ
¼

a0s þ b0

s2 þ a0s þ b0
: (16)

To highlight the advantage of skyhook damping yielded by the frequency-shaped sliding surface,
Fig. 4 compares the vibration transmissions in the frequency domain for the two configurations in
Fig. 3. We can see that (1) there exists tradeoff of damping in the classical configuration between
the high-frequency and low-frequency performances: larger damping yields smaller peak at
resonant frequency but impairs the vibration attenuation at high frequency; (2) there is no such
conflict in the skyhook; (3) skyhook is an ideal configuration of vibration isolation, much better
than the classical configuration (b). The skyhook configuration also eliminates the tradeoff
between rejection of disturbances directly acting at the payload and isolation from ground
vibration. This is why the skyhook damper has become an important concept in vibration
isolation and has been an effective target in many isolation systems [10,11,3].
The choice of LiðsÞ ¼ b0=ðs þ a0Þ yields the ideal skyhook effect. Similarly, we can also design

the frequency-shaped sliding surface to achieve a faster vibration attenuation in the frequency
domain at the payment of high control authority. A more general approach for selection of LiðsÞ is
given in Section 5.
m=1

b a
x i0

0 0

ix

m=1

b

a

x i0
0
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Fig. 3. (a) Skyhook configuration, (b) the classical configuration.



ARTICLE IN PRESS

M
ag

ni
tu

de
  (

dB
)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Frequency  (ω / ωs)

10-1 100 101 102

Fig. 4. Vibration responses of the two configurations (a0 ¼ 2zsos; b0 ¼ o2
s ). Skyhook with zs ¼ 0:7 (solid), skyhook

with zs ¼ 0:1 (dash), classical with zs ¼ 0:7 (dash-dot), classical with zs ¼ 0:1 (dot).

L. Zuo, J.-J.E. Slotine / Journal of Sound and Vibration 285 (2005) 1123–1149 1131
3.3. Switching control for vibration isolation

We have just seen that the ideal isolation performance is achievable once the dynamics of the
system is driven to the sliding surface. We now derive the corresponding switching control law for
this purpose, in a manner similar to Ref. [33].
From the choice of sliding surface,

si ¼ LiðsÞðxi � xi0Þ þ _xi;

we obtain

_si ¼ sLiðsÞðxi � xi0Þ þ €xi: (17)

Combining with the plant model (8), we can obtain the best approximation ûi of the continuous
control law that achieves _si ¼ 0:

ûi ¼ ½ôi
2
� sLiðsÞ�ðxi � xi0Þ þ 2ẑiôið _xi � _xi0Þ þ

Xn

r¼1;rai

�̂irð _xr � _x0rÞ � d̂ i; (18)

where ôi; ẑi; �̂ir; and d̂ i are, respectively, the estimations of the ith modal frequency, ith modal
damping, irth entry of the damping matrix, and the external disturbance on ith mode. Note that
ôi and ẑi can be obtained from experimental modal analysis, �̂ir and d̂ i can often be taken as zero.
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Eq. (18) is the ideal (linear) control force for the nominal plant to achieve skyhook isolation. To
ensure that the actual plant dynamics reach the sliding surface in finite time despite the model
uncertainties and external force, a discontinuous term is added to control force ui:

ui ¼ ûi � ki sgnðsiÞ: (19)

The sliding condition is the same as that in the standard sliding control [28]:

1

2

d

dt
s2i p� Zijsij: (20)

To guarantee this condition, we have to select ki large enough:

ki ¼ Zi þ jo2
i � ô2

i jmax jxi � xi0j þ 2jzioi � ẑiôijmax j _xi � _xi0j

þ
Xn

r¼1;rai

j�ir � �̂irjmax j _xr � _x0rj þ jdi � d̂ ijmax; ð21Þ

where the bound of oi and zi can be obtained practically, and �ir is generally less than or equal to
the ith diagonal term 2ẑiôi of the damping matrix. The upper bound of jdi � d̂ ij often cannot be
obtained so directly in practice. We write

d ¼ V�1M�1f d ¼ V�1M�1VV�1f d ¼ n 1=mi n

� �
V�1f d ;

where the modal mass mi can be obtained from experimental modal analysis. The bound of f d

depends on the intensity of ground excitation and the properties of payloads or upper stages. We
assume

jf dij ¼ jf diðt; _z; z; _z0; z0ÞjpC0iðtÞ þC1iðtÞ k ½_z
T; ðz � z0Þ

T
�T k; (22)

where C0i and C1i are some constants and i ¼ 1; 2; . . . ; n: Since we usually have some a priori
knowledge about the intensity of ground excitation and the upper payloads, we can often estimate
a constant upper bound as C0i and take C1i ¼ 0: This requirement of a priori knowledge of upper
bounds of disturbances in sliding control may be relaxed by using disturbance observers (see, e.g.,
Refs. [9,34]).
In isolation systems, the variables available are z � z0; _z and _z0; which may be measured with

displacement sensors and geophones. Hence we can obtain x � x0 and _x � _x0 for switching
control (11), (18), (19), and (21). And the controller force v can be constructed as v ¼ W�1u: In
cases (for economic consideration) where we do not have geophone sensors on the ground, we can
use ðs=ð1þ tisÞÞðxi � xi0Þ as an estimation of _x � _x0: Such an estimation will not create trouble in
practice because the spectrum density of floor excitation only distributes in low-frequency
bandwidth [17].

3.4. Boundary layer analysis and continuous control

In sliding control, chattering is one of the main concerns. Although frequency-shaped sliding
control has the advantage of reducing the excitation of high-frequency unmodeled dynamics, the
robustness to chattering is only implicitly addressed [30]. In the following, we will make a smooth
approximation of the switching control law by choosing a proper boundary layer, in a manner
similar to Ref. [33].
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Consider a constant boundary layer thickness of Fm: Outside the boundary layer the system
dynamics are the same as the switching control. Inside the boundary layer,

siðtÞ ¼ LiðsÞðxi � xi0Þ þ _xi ¼ FiðtÞpFm: (23)

Then,

xiðtÞ ¼
LiðsÞ

s þ LiðsÞ
xi0ðtÞ þ

1

s þ LiðsÞ
FiðtÞ: (24)

Hence, after transients, the displacement error due to the boundary layer interpolation is bounded
by

jexi
ðtÞjF ¼

Z t

0

hðtÞFiðt � tÞdt
����

����pFm

Z 1

0

jhðtÞjdt ¼ FmkhðtÞk1; (25)

where hðtÞ is the impulse response of 1=ðs þ LiðsÞÞ:
In particular, choosing LiðsÞ ¼ b0=ðs þ a0Þ for the skyhook effect, inside the boundary layer we

have

xiðtÞ ¼
b0

s2 þ a0s þ b0
x0iðtÞ þ

s þ a0

s2 þ a0s þ b0
FiðtÞ: (26)
3.5. Discussion

In the foregoing parts of this section, we assumed that the absolute velocity can be measured
perfectly, but in practice the velocity measurement is only valid above some frequency. For a
geophone sensor the relation of measured signal _̂xi and the velocity _xi generally takes the form

_̂xi ¼
s2

s2 þ 2zgogs þ o2
g

_xi; (27)

where og and zg are the resonant frequency and damping ratio of the geophone sensor. With the
measurement _̂xi; the actual sliding surface for LiðsÞ ¼ b0=ðs þ a0Þ becomes

ŝi ¼
b0

s þ a0
ðxi � xi0Þ þ _̂xi (28)

and the achieved dynamics xi0 ! xi on the sliding surface ŝi ¼ 0 becomes

xiðsÞ

xi0ðsÞ
¼

b0ðs
2 þ 2zgogs þ o2

gÞ

s4 þ a0s3 þ b0ðs2 þ 2zgogs þ o2
gÞ
: (29)

Using the Routh–Hurwitz criterion, the stability of Eq. (29) is ensured if

os

og

4
zs

zg

þ
zg

zs

; (30)

where os and zs are the resonant frequency and damping ratio of the ideal skyhook isolator
(os ¼

ffiffiffiffiffi
b0

p
; and zs ¼ a0=2

ffiffiffiffiffi
b0

p
). If we choose the damping ratio zs of the ideal skyhook isolator

close to zg of the geophone, then the geophone resonant frequency should be smaller than half of
the resonant frequency of the ideal skyhook isolator. If the geophone resonance is very low
(og=os51), then the ideal skyhook effect can be closely attained.
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By designing dynamic sliding surfaces, we can directly achieve the skyhook effect for each mode
of vibration. The entire performance of the multi-mode system is the combination of the
individual modes. Suppose that the target dynamics (skyhook) of the ith mode is xiðsÞ=xi0ðsÞ ¼

Txi=xi0
ðsÞ: From the modal transformation (4), we find that on the sliding surface the entire

performance is

zðsÞ ¼ V ½n Txi=xi0
ðsÞ n�V

�1z0ðsÞ: (31)

Specifically, as an example, if the target of each mode is chosen to be identical, Txi=xi0
¼

Tx=x0
ðsÞ; i ¼ 1; 2; . . . ; n; then ziðsÞ ¼ Tx=x0

ðsÞzi0ðsÞ: If the isolation requirement is stated as a
frequency-domain envelope in natural coordinates zi0ðsÞ ! ziðsÞ; we can use the relation of Eq.
(31) to obtain the skyhook targets Txi=xi0

ðsÞ in modal coordinates.
In practice, identification errors also exist in the mode shape matrix V and participation matrix

W. This yields mode coupling even in proportionally damped systems. To explicitly take the effect
of V and W errors into account in the framework of sliding control is challenging. Practically, we
may check that the W�1HðjoÞV�1 is diagonally dominant before we use matrices V and W in
controller design. In addition, the effect of some modal coupling can be reduced implicitly by
encompassing it as a part of disturbance di: Successful applications of experiment-based modal
control have been reported, e.g., Refs. [6,35], yet the accurate identification of the modal shape
matrix V and participation matrix W is still an important research topic.
4. Simulation results

In this section, we take a two-dof vibration isolator as an example and demonstrate that the
skyhook effect can be robustly achieved using modal decomposition and frequency-shaped sliding
control.
As shown in Fig. 1, the two-dof isolation table used in simulation has a mass 500 kg and

rotational inertia 250 kgm2: The distances from the center of mass to mounting 1 and mounting 2
are 1.0 and 1.4m, respectively, and k1 ¼ k2 ¼ 3� 105 N=m; c1 ¼ 200N s=m; c2 ¼ 120N s=m:
Suppose we identify modal frequencies o1 as 5:4� 0:1Hz and o2 as 9:5� 0:1Hz; and modal
damping 2z1o1 as 0:7� 0:2 and 2z2o2 as 1:7� 0:3; and the mode shape as

V ¼
�1:0 �0:6

�0:6 1:0

� �
:

The upper bound of off-diagonal damping in modal coordinates is taken as minð2ẑ1ô1; 2ẑ2ô2Þ ¼

0:7:
The dynamics of upper stages/payload may be unknown or changeable. As discussed in Section

2, their effect can be considered as a disturbance force vector f d :We assume that the bound of jf d j

could be obtained as

jf d jp
20

20

� �
þ

2� 104

1� 104

" #
ðj _z1j þ j _z2jÞ:
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In this simulation, the upper stage/payload is taken as a two-dof system supported symmetrically
on the isolation table with a pair of spring-dashpots of 1500N/m and 8N s/m. Its mass is 125 kg
(25% of the isolated table), and rotational inertia is 10 kgm2: The distance between the spring-
dashpot connections is 1.0m, and the mass center of the upper stage is located above the
geometric center of the isolation table.
The target dynamics z1=z0 and z2=z0 are chosen as skyhook of frequency 0.1Hz and damping

ratio 0.7. Fig. 5 shows the transmission from z0 ! z1 and z0 ! z2 of the plant and the skyhook
target. The resonant frequencies of the actual plant (eighth order) are 0.778, 1.378, 5.415, and
9.555Hz. And the nominal plant is in fourth order.
We design the controller using modal decomposition and a frequency-shaped sliding surface in

which we take Z1 ¼ Z2 ¼ 0:2: Fig. 6 shows the responses z1ðtÞ of the system at zero initial
conditions with and without control under harmonic ground excitation z0 ¼ 0:001 sinð1:38�
2ptÞm; tX0: We see that the vibration of the isolation table is greatly attenuated.
Figs. 7 and 8 show the responses of z1ðtÞ and z2ðtÞ with switching control compared with the

ideal outputs of the skyhook system excited at resonant frequencies 1:38Hz ðz0 ¼ 0:001 sinð1:38�
2ptÞmÞ and 9:55Hzðz0 ¼ 0:001 sinð9:55� 2ptÞmÞ; respectively.
From these figures, we can see that the ideal skyhook effect is attained under the uncertainties

and disturbance. The control forces v1 and v2 of switching control are shown in Fig. 9.
To reduce the chattering of control forces, we design a continuous controller using the

boundary layer. We take the boundary thickness Fm as 5� 10�6=khðtÞk1 (see Eq. (25)) and replace
sgnðsiÞ in Eq. (19) with a saturation interpolation satðsi=FmÞ: Fig. 10 shows the errors of the
response z1ðtÞ and z2ðtÞ in comparison with the ideal output of the skyhook system.
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Fig. 5. Transmission of uncontrolled plant and target dynamics: uncontrolled z1=z0 (solid), uncontrolled z2=z0 (dot),

skyhook target (dash).
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We see that the peak error due to a boundary layer is less than FmkhðtÞk1 ¼ 5mm: The
continuous control forces v1 and v2 are shown in Fig. 11. Comparing Figs. 11 and 9, we see that
the chattering has been reduced.
In Figs. 10 and 11, the errors due to boundary layer is one order smaller than the expected

values, and the control forces are still not very smooth. The reason is that the constant ki in
‘‘ki satðsi=FmÞ’’ is over-estimated, such that the actual boundary layer thickness is much thinner
than the expected one. By taking the boundary layer as Fm as 1� 10�4=khðtÞk1; Fig. 12 shows the
corresponding errors of displacements due to this boundary layer, and Fig. 13 shows the
corresponding control forces v1 and v2 under ground excitation z0 ¼ 0:001 sinð1:38� 2ptÞm: We
see that these control forces are much more smooth than before.
Note that simulation results in Figs. 7 and 8 show that the controlled system approaches the

skyhook target from the beginning. The displacement errors in Figs. 10 and 12 also show that
there is no obvious ‘‘transition’’ stage. This is not by chance if we consider the following two
reasons. First, the target dynamics is achieved once the system is driven to the sliding surface,
while in the schedule of reference tracking (see Refs. [10–12]) there are still error dynamics (low-
pass filter) between the controlled system and the target on the sliding surface. Second, the
additional states in the frequency-shaped sliding surface (states in LiðsÞ ) offer the feasibility to
choose the initial states, such that the dynamics of controlled system starts on the sliding surface
si ¼ 0 at the beginning t ¼ 0; and therefore, the transient performance is guaranteed. This
guarantee of transient performance is the third advantage of the frequency-shaped sliding surface
over the conventional sliding control and reference tacking schedule.
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5. Extensions and experiment verification

In this section, we will discuss the design of sliding surface from the view of feedback–feedfor-
ward control and contraction theory, then extend the sliding control to modal reaching adaptive
control for vibration isolation. Experimental verifications of sliding and adaptive isolation are
also reported.

5.1. Sliding surface and input–output system

Simulation results in the previous section show that the ideal skyhook effect of isolation can be
robustly attained with the frequency-shaped sliding control and modal decomposition. The
procedure of designing the sliding surface in Section 3, or equivalently the choice of LiðsÞ; is
essentially pole and zero assignment. For example, we set b1 ¼ 0 in Eq. (13) to put the zero at
infinity, and chose a0 and b0 for the desired damping ratio and natural frequency of skyhook
isolation. Though the SISO system is determined uniquely by pole, zero and gain, it is more
general (e.g., extension to MIMO sliding) and more convenient to examine the input–output
relation therein.
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Eq. (24) shows the system dynamics of xiðtÞ under the excitations xi0ðtÞ and FiðtÞ (inside
boundary layer FiðtÞ ¼ siðtÞ). Let us rewrite Eq. (24) as

xiðtÞ ¼
ð1=sÞLiðsÞ

1þ ð1=sÞLiðsÞ
xi0ðtÞ þ

ð1=sÞ

1þ ð1=sÞLiðsÞ
FiðtÞ: (32)

The block diagram of the system described by the above equation is shown in Fig. 14.
We see that the sliding surface in fact defines a control system: plant ð1=sÞ; controller LiðsÞ;

inputs xi0ðtÞ and FiðtÞ: This system is very common to control engineers, and thus, we can design
the sliding surface LiðsÞ using the classical LTI control methodologies according to the
performance specifications. We can also write it in the form of linear fractional transformation as
shown in Fig. 15, where the generalized plant is given by

PðsÞ ¼
1=s 0 1=s

�1=s 1 �1=s

" #
:

Thus, we can also use state-space LTI control techniques, such as H2/LQG, H1; or L1; to design
the sliding surface. In addition, the spectrum of the ground noise can also be taken into account if
we include a shape filter of xi0 in the generalized plant.
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The previous discussion does not include the term _xi0 in the design of the sliding surface. If a
geophone sensor is available on the ground, the frequency-shaped sliding surface (11) can be
defined as

si ¼ LiðsÞðxi � xi0Þ þ GiðsÞ _xi0 þ _xi: (33)

On the sliding surface, the system dynamics is (Fig. 16)

xi

xi0
¼

LiðsÞ � sGiðsÞ

s þ LiðsÞ
: (34)

This system is a hybrid feedback and feedforward control. This is not surprising since the ground
signals in vibration isolation are often used for feedforward. Fig. 16 suggests that we can use the
extensively investigated feedback–feedforward control methods to design the frequency-shaped
sliding surface. The boundary layer analysis can be carried out similarly.
5.2. Nonlinear target dynamics

We have seen that a frequency-shaped sliding surface can directly achieve target dynamics
(skyhook) of the same order as the nominal plant, and we have also seen that the design of such a
sliding surface turns out to be an LTI control problem of feedback or feedback–feedforward. In
fact, the target dynamics can also be chosen to be nonlinear, and the sliding surface can be
synthesized using contraction theory [36,37].
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Take a single-input system as example. The system to be controlled is

xðnÞ ¼ f ðx; _x; . . . ;xðn�1Þ; tÞ þ bðx; _x; . . . ;xðn�1Þ; tÞu (35)

and the target dynamics can be taken as any contracting system,

xðnÞ ¼ gðx; _x; . . . ; xðn�1Þ; tÞ: (36)

To achieve this target, we can define the sliding surface as

s ¼ xðn�1Þ þ s̄ (37)
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and

_̄s ¼ �aðtÞðs̄þ xðn�1ÞÞ � gðx; _x; . . . ;xðn�1Þ; tÞ; (38)

where aðtÞ is a time-varying or invariant gain or an operator such that _s� aðtÞs is contracting.
In this way, we construct a hierarchy of two nominally contracting systems,

_s� aðtÞs ¼ xðnÞ � gðx; _x; . . . ;xðn�1Þ; tÞ; (39)

and we can design the control u to make s tend to zero under the plant uncertainty or disturbance.
We note that the initial condition of s̄ can be chosen as �xðn�1Þ such that s is initially zero.
Furthermore, the target dynamics has been chosen to be of the same order as the system to be

controlled. This may be natural, e.g., when the system is best controlled intermittently, or when it
must follow a desired dynamic behavior rather than desired trajectory, as in some robotic
locomotion applications.
5.3. Adaptive control based on frequency-shaped manifold

We also extend the frequency-shaped sliding control of vibration isolation to adaptive control
[16], so that we can attain the desired multi-dof skyhook isolation without the step of identifying
the modal parameters. In the following, we will summarize the adaptive control based on a
frequency-shaped manifold with f d ¼ 0: For the case where f d is not zero (but is bounded), a
similar expression can be derived with some slight revision.
The matrix B in the plant dynamics (1) is determined by the geometric location of the actuators

and sensors, which is relatively easy to obtain. We assume matrix B is obtained off-line, and the
matrices M, C, and K are unknown. Now we would like to achieve the desired nth dof skyhook
isolation in the form

€z þ C̄ _z þ K̄ðz � z0Þ ¼ 0; (40)

where C̄ and K̄ are preselected matrices to meet the requirement of frequency-domain
performance.
We define a frequency-shaped manifold vector with n entries in the state space,

s ¼ _z þ ðsI þ C̄Þ
�1K̄ðz � z0Þ: (41)

Similar as the single mode case in Section 3, we see that the nth dof target skyhook effect (40) is
achieved once the system is driven to this manifold s ¼ 0:
By rearranging the unknown parameters in the matrices K, C, and M into a column vector a, we

write

Kðz � z0Þ þ Cð_z � _z0Þ � MðsI þ C̄Þ
�1K̄sðz � z0Þ :¼ Ya; (42)

where Y is a matrix with proper dimension composed of z � z0; and _z � _z0: Note that in Eq. (42)
the unknown matrices K, C, and M show up linearly in vector a.
We choose a positive-definite Laypunov function as

V ðs; ~aÞ ¼ 1
2sðtÞ

TMsðtÞ þ 1
2
~aðtÞTP�1 ~aðtÞ; (43)
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where the vector sðtÞ is defined by Eq. (41), M is the mass matrix of the system (symmetric positive
definite), P is a pre-selected (constant) symmetric positive-definite matrix, and the vector of ~aðtÞ is
the error vector of on-line estimates of the parameters a, that is, ~aðtÞ ¼ âðtÞ � a:
The time derivative of V ðs; ~aÞ can be obtained as

_V ðs; ~aÞ ¼ sðtÞTðBu � YaÞ þ _~aðtÞTP�1 ~aðtÞ: (44)

Therefore, we obtain the control-force vector as

u ¼ B�1½YâðtÞ � kd sðtÞ� (45)

and the parameter adaptation law as

_̂aðtÞ ¼ _~a ¼ �PYTsðtÞ; (46)

such that _V ðs; ~aÞ ¼ �sðtÞTkd sðtÞ is negative semi-definite for some selected positive-definite
matrix kd of size n � n; and €V ðs; ~aÞ is bounded. Thus, according to the Lyapunov theorems and
Barbalet’s lemma [28], we conclude that sðtÞ ! 0 as t ! 1; and hence the target dynamics of
skyhook isolation (40) is achieved.
Eqs. (45) and (46) define the adaptive control of vibration isolation based on frequency-shaped

dynamic manifolds. Note that, in contrast with the well-known model reference adaptive control,
the adaptive algorithm of Eqs. (45) and (46) does not use any reference model, and we eliminate
the requirement of ground vibration measurement. In addition, since there are additional states in
the manifold s of Eq. (41), we can choose the initial states to improve the transient performance,
sðtÞ ! 0:
5.4. Experiment verifications of frequency-shaped sliding and adaptive control of isolation

The frequency-shaped sliding control and adaptive control for vibration isolation have been
recently verified in Ref. [16]. The experiments are based on an sdof isolation and the setup can be
found in Ref. [16]. The measurements used in control are the relative displacement and the
absolute velocity of the isolated platform.
Fig. 17 shows the measured time responses using the proposed sliding control under broad-

bandwidth noise excitation, where the experiment plant has a resonant frequency 12 �1Hz and
modal damping 18� 4%; and the target is a skyhook isolation at 2Hz and critical damping 0.7.
From Fig. 17, we see that this controller is very effective for vibration isolation. Note that in this
experiment we are unable to keep the system stable with only the linear equivalent control force
(18) due the parameter uncertainties.
The frequency response controlled with the frequency-shaped sliding surface is shown in

Fig. 18. This figure shows that we closely achieve the skyhook target in a large bandwidth.
In the adaptive isolation based on frequency-shaped manifold, the target is selected as a

skyhook isolation at 1.2Hz and critical damping 0.7. The time responses under a harmonic
excitation are shown in Fig. 19. In this experiment the parameters of the mass, stiffness, and
damping are initially taken as zero and updated according to Eq. (46). We see that the adaptive
control based on a frequency-shaped manifold is very effective for vibration isolation even though
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we do not have any prior knowledge of the plant parameters. The zoomed times responses are
shown in Fig. 20 in comparison with the ideal skyhook, from which we see that the skyhook target
is closely approximated.
6. Concluding remarks

In this paper, we have proposed a robust control schedule for multi-dof vibration isolation.
Modal decomposition is employed to handle the MIMO vibration control using the SISO
control method in modal coordinate, and we can model the system from measured transfer
functions via experimental modal analysis. Therefore, the proposed control schedule is
applicable to controller synthesis based on measurement data or analytical modelling.
Frequency-shaped sliding control, originally proposed in the literature for chattering reduction,
is exploited instead to achieve performance requirements in the frequency domain under plant
uncertainties and payload/upper stage disturbances. The effect of boundary layer thickness on the
performance is quantified. Simulation results illustrate that we can robustly achieve the ideal
skyhook effect of vibration isolation. We have also extended the frequency-shaped sliding control
to a modal reaching adaptive control for vibration isolation. We further show that the design of
frequency-shaped sliding surface is equivalent to a control problem of feedback or
feedback–feedforward, and that linear or nonlinear target dynamics of the same order as the
system to be controlled can also be attained. Recent experiments also demonstrate that the sliding
and adaptive control based on a frequency-shaped sliding surface are very effective for vibration
isolation.
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